镁合金是目前最轻的金属结构材料,其具有低的密度、熔点、动力学黏度、比热容、相变潜热以及和铁的亲和力小等特点;而且其比强度要高于铝合金和钢;其机械加工性能优良,易加工,加工能量仅是铝合金的70%;其耐蚀性要高于低碳钢,已超过了压铸铝合金A380;所以,综合性能优良的镁合金被誉为“21世纪金属”,并广泛应用于汽车、计算机、通讯、航空航天等领域。其中,AZ91D镁合金是目前工业生产中应用最为普遍的一种铸造用镁合金。但是镁合金材料自身的强度低、脆性大、耐蚀性差和高温性能差等缺点又限制了其在工业生产中的应用。要想提高镁合金各方面的性能,就需要系统、全面的对镁合金做基础性的研究。本实验主要研究机械振动的频率和时间对AZ91D镁合金凝固过程的影响,同时探讨了在凝固的不同阶段施加振动时对AZ91D镁合金凝固过程的影响。利用光学显微镜(OM)、TH160里氏硬度计、微机控制电子式万能拉伸试验机和温度采集系统等测试方法,系统的研究了机械振动对AZ91D镁合金组织和力学性能的影响。在镁合金凝固过程中施加不同的振动频率的研究结果为:(1)初生α-Mg相的形貌由铸态下粗大的枝晶转变成为均匀细小的团块状,绝大多数的β相以连续的网状分布于晶界处,分布比较均匀,弥散分布的第二相数量减少。(2)增大振动频率有利于减小晶粒平均直径,α-Mg相的平均晶粒直径最大的减少了20.5%。(3)随着振动频率的增加,合金的强度、硬度、伸长率也逐渐的增大,在50Hz时合金的强度、硬度、伸长率分别达到了200.4MPa、106HB、2.75%,相比铸态下的分别提高了17.8%、37.7%、20.09%。在镁合金凝固的过程中施加不同的振动时间的研究结果是:(1)初生的α-Mg相形貌由一次枝晶臂很长的粗大枝晶转变成为较均匀的细小的等轴晶;第二相β-Mg_(17)Al_(12)由粗大的骨骼状形态转变成为网状连续的形态分布在晶界处,弥散分布的第二相的数量减少。(2)延长振动时间有利于减小晶粒的平均直径,在振动时间为120s时α-Mg相的平均晶粒直径的减少了29.5%(3)镁合金的最大硬度提高33.76%、最大抗拉强度增加22.6%、最大伸长率增加22.7%。在镁合金凝固的不同阶段对镁合金熔体施加机械振动的研究结果为:(1)液相线以上时开始振动(浇注60s后开始振动)和开始结晶的前期阶段施加振动(浇注后150s开始振动)时都能很好的细化α-Mg相,获得等轴晶,绝大多数的β-Mg17Al12相成网状分布于晶界处,在液相线以上就开始振动时,效果更理想。而在结晶的后期阶段开始振动时(浇注后580s开始振动),细化效果不明显,α-Mg相仍以粗大的枝晶状态存在,弥散的第二相比较均匀的分布在α相内,其余的β-Mg_(17)Al_(12)相成网状分布于晶界处。(2)在凝固的不同阶段施加振动时,开始振动的时间越晚,合金的强度、硬度、伸长率都有减小的趋势。采用热分析法,在不同振动频率下,测得了AZ91D镁合金的凝固温度曲线,结果表明:施加机械振动能缩短镁合金的凝固时间,而且振动频率越大,镁合金凝固时间越短。