CPU极限
十年前就有人说微米级是极限了.现在做到45nm,也没到极限,36nm都有了.随着科技进步,新的理论推出不出3年就可以付注实施.理论推断早就不行了.物理极限是多少,没法定论.也许只能做1nm后就不行了,也许0.1nm,这要看科技了.有报道说,现在可以做成原子的,就是原子排成一行,我想不可能再比原子更细了吧?但也有可能将原子打开,做成夸克也不得而知 條萊垍頭
cpu性能测试死机
这种情况有可能会造成死机,把它的电源关掉过后重新开机看可不可以。如果仍然不行,那就更换一根相机线吧
1、硬件:PC的CPU、内存是否足够?
AOI数据量大,采集卡是否用的PCIe的?PCI的带宽不够!
2、软件:采集卡的驱动是不是原版的,合适的驱动?
软件的设计申请的内存等是否足够
cpu极限超频记录
目前CPUID官方网站列出的CPU超频世界记录前三名第一名频率超到了8794.33MHz,接近9GHz,由FX-8350创造,这是一款推土机架构的八核处理器前几名都不是近两年创造的,近几年的CPU受制于工艺制程越来越小和核心数量越来越多的趋势,超频能力整体是下降的,记录前几名都是早期产品,且大多核心数都较少,甚至基本上多核CPU在冲击极限频率时都会只保留一个核心工作,其他全部关闭,第一名对应的CPU肯定也不会是八个核心全开下的超频成绩
CPU极限温度
100度。cpu在100度会断电保护,超过这个上限就会烧坏。
中央处理器(Central-Processing-Unit),简称CPU,是1971年推出的一个计算机的运算核心和控制核心,是信息处理、程序运行的最终执行单元。CPU包含运算逻辑部件、寄存器部件和控制部件等,并具有处理指令、执行操作、控制时间、处理数据等功能。其自产生以来,在逻辑结构。运行效率以及功能外延上取得了巨大发展。
CPU包括运算逻辑部件、寄存器部件和控制部件等。运算逻辑部件,可以执行定点或浮点算术运算操作、移位操作以及逻辑操作,也可执行地址运算和转换、寄存器部件,包括通用寄存器、专用寄存器和控制寄存器。通用寄存器又可分定点数和浮点数两类,它们用来保存指令执行过程中临时存放的寄存器操作数和中间(或最终)的操作结果。通用寄存器是中央处理器的重要组成部分,大多数指令都要访问到通用寄存器。通用寄存器的宽度决定计算机内部的数据通路宽度,其端口数目往往可影响内部操作的并行性。专用寄存器是为了执行一些特殊操作所需用的寄存器。
CPU极限测试
CPU的性能主要体现在其运行程序的速度上。影响运行速度的性能指标包括CPU的工作频率、Cache容量、指令系统和逻辑结构等参数。
主频
主频也叫时钟频率,单位是兆赫(MHz)或千兆赫(GHz),用来表示CPU的运算、处理数据的速度。通常,主频越高,CPU处理数据的速度就越快。
CPU的主频=外频×倍频系数。主频和实际的运算速度存在一定的关系,但并不是一个简单的线性关系。 所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。
在Intel的处理器产品中,也可以看到这样的例子:1 GHz Itanium芯片能够表现得差不多跟2.66 GHz至强(Xeon)/Opteron一样快,或是1.5 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。CPU的运算速度还要看CPU的流水线、总线等各方面的性能指标。
外频
外频是CPU的基准频率,单位是MHz。CPU的外频决定着整块主板的运行速度。通俗地说,在台式机中,所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。
但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。
绝大部分电脑系统中外频与主板前端总线不是同步速度的,而外频与前端总线(FSB)频率又很容易被混为一谈。
总线频率
AMD 羿龙II X4 955黑盒
前端总线(FSB)是将CPU连接到北桥芯片的总线。前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。
有一条公式可以计算,即数据带宽=(总线频率×数据位宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。
外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。
也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一亿次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8bit/Byte=800MB/s。
倍频系数
倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高主频而得到高倍频的CPU就会出现明显的“瓶颈”效应-CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。
一般除了工程样版的Intel的CPU都是锁了倍频的,少量的如Intel酷睿2核心的奔腾双核E6500K和一些至尊版的CPU不锁倍频,而AMD之前都没有锁,AMD推出了黑盒版CPU(即不锁倍频版本,用户可以自由调节倍频,调节倍频的超频方式比调节外频稳定得多)。
缓存
缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。
实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。
L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32-256KB。
L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。
L2高速缓存容量也会影响CPU的性能,原则是越大越好,以前家庭用CPU容量最大的是512KB,笔记本电脑中也可以达到2M,而服务器和工作站上用CPU的L2高速缓存更高,可以达到8M以上。
L3 Cache(三级缓存),分为两种,早期的是外置,内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。
而在服务器领域增加L3缓存在性能方面仍然有显著的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。
CPU极限模式
理论上讲,CPU的主频是没有上限的。
但是现实是,随着CPU的频率增加,其功耗与发热的增加,却不是线性增加的,目前主流产品的频率一般小于4GHz。
所以,CPU的频率有极限,但是这个极限,说不好是多少,因为技术在发展。
最重要的一点是,现在发展方向,是朝着多核发展,而不是高频发展,所以,频率极限不好确定。CPU是在半导体硅片上制造的,硅片上的各个元件之间需要导线将其联接起来,在高频状态下,导线越细、越短越好,这样才能减小导线分布电容等杂散干扰以保证CPU运算正确。因此制造工艺的限制,是CPU主频发展的最大障碍之一。
目前的制造工艺,14nm的处理器已经量产,回想整个发展史,在1965年推出的10微米(μm)处理器后, 经历了6微米、3微米、1微米、0.5微米、0.35微米、0.25微米、0.18微米、0.13微米(130纳米)、90纳米、65纳米、45纳米、32纳米、22纳米,一直发展到目前(2015年)最新的14纳米,不过在半导体工艺进入14nm之后,芯片的发展速度有变慢的趋势,不再按照摩尔定律继续发展,据说是资金的投入与产出差的太大。
但是,最主要的是,这个技术依然在不断发展,各种技术手段的发明使得该行业的发展跟上了摩尔定律的步伐。在90纳米时,应变硅发明了;45纳米时,增加每个晶体管电容的分层堆积在硅上的新材料发明了;22纳米时,三栅极晶体管的出现保证了缩小的步伐。那么相应的,CPU的频率是可以提升的,因为工艺的提升,极大的降低了CPU的发热量。拿去年手机界的CPU高通810来说,由于CPU架构与制作工艺不相配,810的发热量使得它“名噪一时”,大部分810产品比较失败,今年820采用了更为先进的14nm工艺,发热量明显下降。
下一代的10nm光刻技术,英特尔继续逼近硅原子极限,考虑到这个原子半径问题,可能会有新材料出场,说不定呢!
好了,言归正传,只要CPU的发热可以控制住,频率是可以向上增加的,2014年,AMD FX- 8370突然破纪录,最高位8722.78 MHz,核心电压足足有2.004 v,散热当然用的是液氮啦~~~
说了这么多,跟你问的问题关系也不大,没有说最高频率是多少,因为
目前来讲,这个数字不能确定,CPU的发展不朝高频发展,而是多核发展,所以这个问题还真不好回答
。(部分信息源自互联网,未标明作者,如有侵权,请联系该知乎用户哟~)CPU物理极限
根据现在掌握的资料,Inter的处理器能够长时间耐受的极限温度在80度,短时间的为90度,AMD的极限温度稍高点,在95度左右。笔记本的多数在100度左右。
需注意的是:现在台式机测试的CPU温度都是CPU散热片的问题,而不是内核问题。而大部分笔记本测试的CPU温度,就是内核温度了,这是从笔记本散热、稳定、节能等多方面因素决定的。
如果告诉大家,笔记本电脑散热风扇是在CPU温度超过75摄氏度后才会开动起来主动散热的,大家是否为笔记本抹一把汗呢?其实,大可不必。笔记本中对CPU测温采用的是热敏电阻,测温点在CPU底部,如果是直接读数的话,其实温度并没有这么高,而其显示的监控温度,是经过校正的,比它测量的温度高,更加接近CPU的内核温度。
而台式机的测温就没有这么讲究了,报告的是CPU散热片的真实温度。更有甚者,测温探头根本就没有和CPU散热片或者CPU接触,测量的只是CPU附近的空气温度。这才是造成CPU在"低温"下烧毁的原因。从INTEL公布的数据来看,PIII550E的温度极限在85摄氏度,PIII800E的极限温度在80度左右。
附:要知道AMD处理器能承受的最高工作温度,一般通过处理器的OPN就可得知。OPN是Ordering Part Number的缩写。处理器表面都有这个编号。
1. Athlon XP
例如,某块Athlon XP 的编号为:AX1800DMS3C
上面的OPN就指出了这块CPU能承受的最高工作温度——95℃。它是由OPN中右边数第三个字母决定的。现有的Athlon XP产品中:V=85℃;T=90℃;S=95℃。
2. Athlon 64、Athlon 64FX and Opteron
对于Athlon 64、Athlon 64FX and Opteron处理器来说,它能承受的最高工作温度取决于OPN中右边数第四个字母,它们的关系如下:
O=69℃
P=70℃
X=95℃
例如:Opteron 240,OSA240CCO5AH;Athlon 64 FX-51,ADAFX51CEP5AK;Athlon 64 3200+: ADA3200AEP5AP
它们能承受的最高工作温度分别为:69℃、70℃、70℃。
了解了这些之后,AMD的fans就可以对自己的爱机做到心中有数了,在炎热的夏季里避免出现“烧”机的惨剧。
由此可以看出散热的重要性!!!
希望对你有帮助~
CPU极限频率
目前主频最高的cpu是i7—-7700K,他是目前Intel(amd的FX-9590主频有4.7G)出厂时主频最高的cpu,主频有4.2GHZ, 单核心可睿频至4.5GHZ。
但是cpu可以依靠超频来提高频率。其超频受cpu体质和散热条件的制约。7700K的理论超频极限大概在7GHZ(液氮散热),但最近大神der8auer选择了成本更好的液氦成功地实现了单核心单线程7383MHz,启用四核心八线程后的成绩是7328MHz,相比于4.2GHz基准频率分别提高了75%和74%,均双双创出世界纪录。
cpu可以承受多少度极限
一般情况下根据鲁大师的提示cpu的温度,最高不要超过85度,最好温度控制在75度以下认为是安全的。温度超过80度以上很容易引起电脑死机或自动关机等,就属于电脑散热不良了。引起电脑温度高的问题一般是散热的问题,比如一般笔记本电脑cpu的温度都要明显高于台式电脑的cpu温度。主要是因为笔记本由于受到体积小影响。下面再来简单介绍下引起电脑cpu温度高一般与哪些因素有关。
一:环境温度
cpu温度跟环境温度有很大关系,夏天的时候会高一点的。一般CPU空闲的时候温度在50°以内,较忙时65°以内,全速工作时75°以内都是正常的,所以我们建议大家夏天环境温度过高,电脑最好不要长时间的开着,以免影响cpu的寿命;冬天由于环境温度很低,我们会发现cpu的温度一般控制在30度左右,。cpu温度过高会造成重新启动或蓝屏死机等现象。
二:cpu风扇质量与主机环境
如果cpu的散热风扇质量很差,转的很慢也会严重的影响cpu的散热,导致cpu温度很高,同时如果主机机箱风道口设计不合理,导致内部的热气不能及时排出,也会导致cpu的温度很高。所以推荐大家在购买电脑的时候,机箱和cpu风扇也要考虑下。
三:超频
电脑需要超频就需要提高cpu的工作电压,工作电压升高,肯定会引起功耗加大,发热量自然增加,一旦发热量与散热量趋于平衡,温度就不再升高了。发热量由CPU的功率决定,而功率又和电压成正比,因此要控制好温度就要控制好CPU的核心电压。但是电压过低又会不稳定,在超频幅度大的时候这对矛盾尤其明显。很多时候CPU温度根本没有达到临界值系统就蓝屏重启了,这时影响系统稳定性的罪魁就不是温度而是电压了。所以如何设置好电压在极限超频时是很重要的,设高了,散热器挺不住,设低了,CPU挺不住,所以一般编辑不推荐大家使用超频技术。
通过以上详细介绍,cpu温度多少正常呢?这个问题是跟很多因素有关的。小编建议大家在使用电脑的时候,不要太长时间使用,电脑也是需要休息的。这样cpu才不会容易出现温度高,或者损坏等情况。
cpu极限是几纳米
1、CPU制程技术最小能做到0.11纳米。
2、芯片制程越小,单位体积的集成度越高,就意味着处理效率和发热量越小。
3、制程工艺的提升,决定3D晶体管横面积大小。在不破坏硅原子本身的前提下,芯片制造目
前是有理论极限的,在0.5nm左右,因为本身硅原子之间也要保持一定的距离。
4、制程工艺 就是通常我们所说的CPU的“制作工艺”,是指在生产CPU过程中,集成电路的精细度,也就是说精度越高,生产工艺越先进。在同样的材料中可以制造更多的电子元件,连接线也越细,精细度就越高,CPU的功耗也就越小。