最佳答案
svm非线性分类原理是我们需要事先对数据打上分类标签,这样机器就知道这个数据属于哪个分类。
同样无监督学习,就是数据没有被打上分类标签,这可能是因为我们不具备先验的知识,或者打标签的成本很高。
所以我们需要机器代我们部分完成这个工作,比如将数据进行聚类,方便后续人工对每个类进行分析。
SVM 作为有监督的学习模型,通常可以帮我们模式识别、分类以及回归分析。
svm处理非线性数据原理?
svm非线性分类原理是我们需要事先对数据打上分类标签,这样机器就知道这个数据属于哪个分类。
同样无监督学习,就是数据没有被打上分类标签,这可能是因为我们不具备先验的知识,或者打标签的成本很高。
所以我们需要机器代我们部分完成这个工作,比如将数据进行聚类,方便后续人工对每个类进行分析。
SVM 作为有监督的学习模型,通常可以帮我们模式识别、分类以及回归分析。
版权声明:该问答观点仅代表作者本人。如有侵犯您版权权利请告知 cpumjj#hotmail.com,我们将尽快删除相关内容。