1、
二次函数解题技巧:二次函数有点难,求点坐标是关键。一求函数解析式,再求面积带线段。动点问题难解决,坐标垂线走在前。三角相似莫相忘,勾股方程解疑难。二次函数(quadratic function)是一个二次多项式(或单项式),它的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
2、
二次函数解题技巧:二次函数有点难,求点坐标是关键。一求函数解析式,再求面积带线段。动点问题难解决,坐标垂线走在前。三角相似莫相忘,勾股方程解疑难。
3、
二次函数综合题,题型的变化比较多,要求的结果也非常多样,但是其核心都是围绕着点的坐标来进行,一般的情况是先由已知点的坐标,求出函数解析式,再由函数解析式去求未知点的坐标,和变化后相应图形的关键点的坐标。
初中二次函数解题技巧:
1、
平移:二次函数图像经过平移变换不会改变图形的形状和开口方向,因此a值不变。顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。
2、
轴对称:此图形变换包括x轴对称和关于y轴对称两种方式。
二次函数图像关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数。顶点位置改变,只要根据关于x轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
二次函数图像关于y轴对称的图像,其形状和开口方向都不变,因此a值不变。但是顶点位置会改变,只要根据关于y轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
3、
旋转:主要是指以二次函数图像的顶点为旋转中心,旋转角为180°的图像变换,此类旋转,不会改变二次函数的图像形状,开口方向相反,因此a值会为原来的相反数,但顶点坐标不变,故很容易求其解析式。