产品数据分析方法八种

分类: 科技 时间: 2024-12-28 12:34:46

产品数据分析方法八种?

最佳答案

八种常见的数据分析方法

1数字和趋势

采用数字和趋势图进行数据信息的展示最为直观,从具体的数字和趋势走向中可以更好地得到数据信息,有助于提高决策的准确性和实时性。

2维度分解

当单一的数字或趋势过于宏观时,我们可以通过不同维度对数据进行分解,以获取更加精细的数据洞察。在进行维度选择时,需要考虑此维度对于分析结果的影响。

3用户分群

用户分群即指针对符合某种特定行为或具有共同背景信息的用户,进行归类处理。也可通过提炼某一类用户的特定信息,为该群体创建用户画像。

用户分群的意义在于我们可以针对具有特定行为或特定背景的用户,进行针对性的用户运营和产品优化,比如对具有“放弃支付或支付失败”的用户进行对应优惠券的发放,以此来实现精准营销,大幅提高用户的支付意愿和成交量。

4转化漏斗

绝大部分商业变现的流程,都可归纳为漏斗。漏斗分析是常见的一种数据分析手段,比如常见的用户注册转化漏斗,电商下单漏斗。整个漏斗分析的过程就是用户从前到后转化的路径,通过漏斗分析可以得到转化效率。

这其中包含三个要点:其一,整体的转化效率。其二,每一步(转化节点)的转化效率。其三,在哪一步流失最多,原因是什么,这些流失的用户具有什么特征。

5行为轨迹

数据指标本身只是真实情况的一种抽象,通过关注用户的行为轨迹,才能更真实地了解用户的行为。

例如只看到常见的uv和pv指标,是无法理解用户是如何使用你的产品的。通过大数据手段来还原用户的行为轨迹,可以更好地关注用户的实际体验,从而发现具体问题。如果维度分解依旧难以确定某个问题所在,可通过分析用户行为轨迹,发现一些产品及运营中的问题。

6留存分析

人口红利逐渐消退,拉新变得并不容易,此时留住一个老用户的成本往往要远低于获取一个新用户的成本,因此用户留存成为了每个公司都需要关注的问题。可以通过分析数据来了解留存的情况,也可以通过分析用户行为找到提升留存的方法。

常见的留存分析场景还包括不同渠道的用户的留存、新老用户的留存以及一些新的运营活动及产品功能的上线对于用户回访的影响等。

7A/B测试

A/B测试通常用于测试产品新功能的上线、运营活动的上线、广告效果及算法等。

进行A/B测试需要两个必备因素:

第一,足够的测试时间;第二,较高的数据量和数据密度。

当产品的流量不够大时,进行A/B测试很难得到统计结果。

8数学建模

涉及到用户画像、用户行为的研究时,通常会选择使用数学建模、数据挖掘等方法。比如通过用户的行为数据、相关信息、用户画像等来建立所需模型解决对应问题。

版权声明:该问答观点仅代表作者本人。如有侵犯您版权权利请告知 cpumjj#hotmail.com,我们将尽快删除相关内容。