高铁硬币不倒是真的吗(高铁硬币)

❶ 高铁可以带硬币

没问题, 硬币又不是违禁品,只要不是赃物,随便你
2016高铁火车携带物品新规定
1、每位旅客可免费携带物品20千克,儿童(含免费儿童)10千克,外交人员35千克。 残疾人用车可免费携带,并不计入免费携带品20千克范围内。
2、每件物品长宽高之和不超过160厘米,杆状物品不超过200厘米,但乘坐动车组时不超过130厘米。
3、不能携带物品:国家禁止或限制携带的物品;法律、法规、规章中规定的危险品、弹药和承运人不能判明性质的化工产品;动物及妨碍公共卫生(包括有恶臭等异味)的物品;能够损坏或污染车辆的物品;规格或重量超过规定的物品
2016年新规定又新增加了禁止携带可能危及旅客人身安全的菜刀、餐刀、屠宰刀和斧子等利器、钝器;禁止携带警棍、催泪器、催泪枪、电击器、电击枪、射钉枪、防卫器、弓、弩等其他器具。

同时,禁止携带可能干扰列车信号的强磁化物,有强烈刺激性气味的物品,有恶臭等异味的物品,活动物(导盲犬除外),可能妨碍公共卫生的物品,能够损坏或者污染车站、列车服务设施、设备、备品的物品。
新规对于限量携带物品也进行了调整,不超过20毫升的指甲油、去光剂、染发剂;不超过120毫升的冷烫精、摩丝、发胶、杀虫剂、空气清新剂等自喷压力容器;安全火柴2小盒;普通打火机2个。
规定不少,但硬币不在此列

❷ 高铁上立硬币是真的吗

是真的呀,高铁动车组列车运行很平稳的,硬币立在平的窗台上,只要正常行驶,基本上不会倒的,有机会可以试试,我有好多朋友都试过

❸ 高铁上安检让带大量的一元硬币吗(500个)

当然可以的,你说的硬币属于一般的流通货币,不属于易燃易爆品和管制危险物品,不属于毒品和限制携带物品,你放在箱子里,随身携带通过安检是没有问题的。

❹ 10个硬币放到铁轨上,高铁开过会怎样

不可以身试法,任何非法放在运行高铁铁轨上东西都属于违法行为,会受到处罚回。
高铁全封闭,有防答异物侵入网,有综合视频监控系统,用的工具都贴有反光标和二维码,就是防止异物侵线!全程监控,检测,监测,还有道班,巡逻,破坏几率接近零,即使有,监测到也会停车。

❺ 中国所有的高铁都能放硬币不到吗

不是所有的高铁都能立硬币不倒,没那么完美

❻ 为什么日本高铁立不起硬币而中国高铁可以

平心而论“立硬币”只能算一个直观但不严谨的对比试验,立硬币成功了当然说明列车运行非常平稳,立不起来硬币却不能说明稳定性就很“差”,因为乘客对于车辆横摇无疑是有一个不至于造成明显不适感的容忍限度的(否则铁路上就不会允许一定范围内的欠/过超高的存在),甚至有时候为了实现其他目标比如提速而在不至造成明显不适的前提下适当“牺牲”乘坐舒适度也是完全可以接受的。立硬币试验是在京沪高铁上做的,有车迷在其他高铁线路上做这个试验结果始终不成功,是不是就说明其他的高铁平稳性差、应该给个差评?显然并非如此。

线路条件和车辆技术水平都有可能影响列车运行稳定性。车辆方面不能断言中国和日本孰优孰劣,也许“各有所长”是更准确的表述,这里姑且采取(虽然不讨人喜欢的)更谨慎保守的看法,毕竟“由于车辆技术方面相对发达国家还存在一定差距......”类似这样的表述在国内技术文献中时常出现,我想学者们的这种谦虚不会是毫无原因的。CRH动车组的历史满打满算也只有15年,而日本和欧洲的高速列车已经有几十年的发展历史,设计经验的积累是一方面,另一方面由于新干线的线路条件总体较“差”(后述)因此日本实际上更加注重通过车辆技术的改进来弥补基础条件的严重不足。何以说新干线的线路条件较差呢?即以立硬币试验对比的京沪高铁和东海道新干线而论,两者的线路条件可谓天差地别——

仅仅是从线间距和曲线半径标准就可看出东海道新干线和国内新建高速铁路有多大差距。即使是200km/h级别有砟客货混跑铁路,在国内标准下也需要4.4m的正线线间距并按3500(最小)/2800(困难)m设置曲线,至于300km/h级别高速铁路客运专线更是需要4.8m的线间距和5500(最小)/4500(困难)m的曲线半径,而仅仅相当于国内200km/h级别铁路标准的东海道新干线已从1964年开通时的210km/h提速到了现在的285&270km/h。在线路条件较差的情况下,这样的提速必然要在舒适度上付出一定牺牲。但是,我们无法去指责1959年的十河信二(大力推进新干线建设的时任国铁总裁)和岛秀雄(为新干线制订具体技术方案的国铁技术总监)没有预见到几十年后高速铁路的运行时速将达到300公里(八十年代末法国LGV大西洋线第一个达到了时速300公里)、从而在建设东海道新干线时提前预留一个较高的标准,而且以日本国土狭小、人口密集、地价高昂的现实国情也的确没有在土建方面“大手大脚”的条件。

对乘客舒适度影响最显著的莫过于曲线半径、超高、缓和曲线以及夹直线。曲线半径标准很容易理解,大弯道不容易让旅客产生列车急转时的不适感。但是,列车通过曲线时必然会产生离心力,导致车辆出现横向摇动,乘客会感到被不由自主地“甩”向弯道的外侧(同时也会造成轮轨的相互磨损),而且曲线半径越小、通过曲线的速度越高,离心加速度越大。但对高速铁路而言人为降低速度不是一个好的选择,最好是曲线半径在建设时能够取一个较高的标准。为了平衡离心力,可以使轨道外侧适当抬升至高于内轨,这样列车过弯时由于轨道内外高差会自然向曲线的内侧倾斜,产生的重力分力会抵消离心力的影响,降低乘客的不适感,内外轨间的高度差即为“超高”。对于准轨铁路,使列车通过曲线的离心力被完全平衡时的超高为h=11.8×V²÷R(h:超高值mm,V:通过速度km/h,R:曲线半径m),但实际却不能简单套用计算结果,因为外轨超高也不宜过高,否则列车过大的倾斜同样会造成旅客不适,而且必须考虑到列车缓行、或同线路有其他中低速列车、或列车在紧急情况下不得不在弯道上停车时不至因内倾过度而侧翻,因此超高设置必然有一上限(根据国内实验结果,超高达到200mm以上时旅客会产生明显的倾斜感)。国内一般规定普速铁路超高不大于150mm,高速铁路超高不大于180mm,而东海道新干线设置了200mm超高,如按国内标准实际上已超过了允许上限。

根据超高计算公式,以东海道新干线开通时的V=210km/h、R=2500m代入,得出离心力得到平衡时的超高应为208mm,当时东海道新干线实际设置的曲线段最大超高为180mm,也即相对均衡超高“欠”28mm,线路实设超高小于离心力得到完全平衡时所需的超高,这称为“欠超高”(反之则为过超高);或者倒代入h=180mm,V=2500m,得出在实设180mm超高时列车的均衡通过速度应为195km/h,而列车实际通过速度(210)要偏高,这意味着由于实际通过速度高于均衡通过速度,列车通过曲线时产生的离心力没有得到完全抵消(过超高则反之,实际通过速度低于均衡速度,列车向内倾斜),实际上列车仍然会向外侧倾斜。但在一定范围内这种倾斜并不会造成旅客明显的不适、是被允许的,按照国内高速铁路标准,欠超高在40mm以下为“优秀”、在60mm以下为“良好”,最大不超过90mm(国内普速铁路标准更宽,而欧洲的法、德等国高速铁路甚至允许150~180mm的欠超高),因此在时速210公里时,东海道新干线的曲线段欠超高仍在可接受范围内。

然而,随着90年代最高时速270公里的300系高速列车投入运行,东海道新干线的运行时速大大提高了,以V=270km/h、R=2500m代入得出均衡超高h=344mm,已经大大超过了超高允许上限,日本也不得不将东海道新干线的曲线段超高从180mm调高到了200mm(内外轨的高差可在线路维修时进行调整),即使这样如果按V=270通过仍然存在144mm欠超高、依然超过欠超高标准上限(如果按照极度宽松的法国高速铁路标准倒是啥事都没有......)。最终不得不将列车通过2500m曲线时的速度限制在255km/h(其他路段为270km/h),这样V=255时所需超高为306mm,存在106mm欠超高,随之又将欠超高标准由≤90mm放宽至≤110mm,同时放宽了对列车通过曲线时左右横向加速度的限制(意味着容忍更大程度的车辆横摇,必然要牺牲一部分舒适性),这样刚好能够满足提速——但若按照国内高速铁路标准,200mm的超高和106mm的欠超高都已经是“超标”了。在山阳新干线、东北新干线陆续提速到时速300公里的时候,255km/h的曲线段限速却依然伴随了东海道新干线多年,直到21世纪新的N700系高速列车投入运营。由于N700系列车通过由车载计算机控制的空气弹簧装置能够在通过曲线时实现车体1°的自主倾斜,换言之以自主倾斜来弥补外轨超高的不足,从而在同样线路条件下实现了以270km/h速度通过2500m半径曲线,这是新干线通过车辆技术的改进来弥补线路条件不足的典范。

京沪高铁的情况呢?按V=350km/h、R=7000m,得出均衡超高应为206mm、但这超过了国内高铁允许上限180mm;曲线段实际设置超高为175mm,也就是说列车按350km/h通过时尚存在31mm的欠超高,但完全符合国内的“优秀”标准;由于现阶段动车组运营时速为300公里,代入得V=300时的均衡超高为150mm,则存在175-150=25mm的过超高,列车会稍向内侧倾斜,但依然满足“优秀”标准。相比于东海道新干线,京沪高铁的线路条件已经不知优越到哪里去了。但是,我们能够因此而做出“新干线不如中国高铁”的结论吗?诚然中国高铁的土建标准要高很多,但这里面归功于技术的东西只是一部分(当然还是有的,长大隧道和桥梁这样的大工程都离不开技术进步),更多的其实应该归功于时间(新干线大多已是几十年前开工的项目了)和环境(正如上文所言,以日本地狭人稠的现实的确没有在土建上“大手大脚”的资本)上的差异,甚至如果对车辆技术有足够的信心,那么主动选取一个较“低”的有利于节省投资的土建标准也并无不可,高速铁路普遍放宽最大限制坡度(基于高速列车的动力大大增强这一事实)以减少小曲线和桥隧工程量就是一例。东海道新干线以仅相当于国内时速200公里级别铁路的线路标准,通过不断提速达到了最高285公里的运营时速,如果我们的关注点全在于“立不起来硬币”(本来日本就是以牺牲部分舒适性来满足提速条件的,想必他们对此也早有心理准备),岂不是“舍本逐末”?对于旅客来说,无论是舒适度的提升亦或是旅行速度的提高都需要权衡取舍,在不至造成明显不适感的前提下适当牺牲舒适性来换取旅速提高是否值得?特别是对国内很多200&250km/h级别高速铁路而言,现在旅客对速度的要求进一步提高,200km/h级别动车组在某些情况下已经不能满足长途旅行需求了,那么是按高标准另起炉灶新建一条时速350公里级别高铁,还是学习国外的经验适度放宽标准、改进车辆技术、在现有时速200&250公里线路的基础上提速到300公里,这个问题也许值得进一步思考。

❼ 高铁硬币不倒是真的吗

是真的。这是一个外国游客在体验高铁时做的实验,并且当时是拍了视频的,并且发到了网上。

❽ 高铁硬币不倒是真的吗

硬币在高铁上立8分钟不倒
是真的

❾ 为什么高铁上竖着的硬币8分钟而不倒

中国高铁运行过程中有多平稳,近日在网络上疯传的一段视频或许能够说明问题。

一位在中国旅行的外国人,将一枚硬币竖立在,正在京沪高铁上以时速300公里飞驰的列车窗台上,硬币竟然能够屹立8分钟而不倒,而且在列车到达常州北站减速直至停稳时竟然仍能立得稳稳当当,只是在列车要进站时,因为需要变换轨道,导致列车出现大范围横向移动,硬币才竖立不稳倒掉。

这位外国友人将视频传到YouTube上后,在海内外引起了热议。这位外国友人说,我最近去上海旅行,成功地在时速300公里的列车上竖起了一个硬币。现代化的高速铁路非常快也很舒适,中国企业已经成为高铁的全球领导者。如果可以建造又舒适又快的高速列车,为什么要建造速度又慢又不舒服的列车呢?我们需要用现代化技术修建瑞典新的高速铁路网。他还说,这次旅行旅行是他的公司SBRC(斯堪的纳维亚桥梁铁路集团)和CDB(中国开发银行)安排的,同行的还包括瑞典国会交通委员会以及瑞典交通运输管理部门的代表。

这让很多人惊讶得合不上嘴巴!许多乘坐过日本或者欧洲高铁的人都知道,有时候你都不能在车上稳稳地站立,不能在车上气定神闲地行走,为什么中国的高铁能够如此平稳,一枚立着的硬币都能8分钟而不倒?

对于高铁运行的稳定性,我们可以从三个指标来考察。第一个指标是纵向稳定性,包括列车起停时、加减速时、匀速运行时的平稳性;第二个指标是横向稳定性,主要反应列车的左右摇摆;第三个指标是垂向稳定性,主要是反应列车的上下颠簸。应该说作为世界上标准最高的高铁线路与列车,CRH380系列在京沪高铁上行驶时,在这三个指标上都已经达到了一种极致,所以这位外国友人才能够立一枚硬币在高铁上8分钟而不倒,所以小朋友才能够在京沪高铁上自如地玩搭积木游戏。

我们先来看第一个指标,纵向稳定性。中国高铁运行稳定到什么水平呢,如果不是因为看到窗外的参照物在后退,经常会出现列车已经走出很远,你都没有发现的地步。正如视频中显示的,当列车稳稳地停在常州北站站台上时,那枚硬币依旧能够稳稳地立在那里(在进站前因为要变换轨道,硬币曾倒过,我说硬币不倒,是排除变轨这个因素,只是从时速300公里减速到0公里的过程)。

如果一定要说清楚这个问题,就涉及到两个概念。第一个概念是加速度(减速度),反映的是速度变化的快慢;第二概念叫加加速度(减减速度),反映的是加速度(减速度)变化的快慢。前一个的单位是米/秒3,后一个单位是米/秒2。而能够反映高速列车纵向平稳性的指标,就是加加速度或者减减速度,当然列车匀速运行时这个值肯定比较小,能够反映出列车纵向平稳性水平的就是在列车起步时或者停站时。

中国高铁运行为什么纵向平稳性能够这么高?原因就是中国高速列车的加加速度与减减速度都非常低?有多低?以中国中车旗下四方股份公司研制的CRH380A为例,它的加加速度和减减速度值要求必须小于0.75米/秒2。这个指标代表什么水平?在全球这个行业是顶尖的。

第二个指标是横向稳定性也就是左右晃动,第三个指标是垂向稳定性,也就是上下颠簸。在这两个指标上,中国的高铁列车控制得也非常严格。还是以CRH380A型高速动车组为例,在列车以时速300公里运行时,要求客室中部的横向最大加速度只有0.42米/秒2。

对于列车的纵向平稳性,起决定作用的,首当其冲的是列车,但是对于列车横向与垂向稳定性,起决定作用的却是高铁线路。中国不但拥有世界上第一流的高速列车,而且还拥有世界上超一流的高铁线路。我说超一流并不是夸张,京沪高铁就是世界上建设标准最高的高铁线路,没有之一。

就保证列车平稳运行方面而言,高铁线路首先要平直。所谓平直就是尽量采用直线或者大半径的圆曲线,不能有太多太急的弯道。如时速350公里的高铁要求线路的曲线半径一般要求不小 7000米,而京沪高铁的最小曲线半径是9000米,在非常困难的地方最小曲线半径也不低于7000米。而日本、欧洲的很多高铁线路最小曲线半径只有4000米左右。为了做到线路的平直,中国高速铁路建设大量采用桥梁,一方面可以节约土地征用,另一方面就是能够截弯取直。

第二要平顺,所以线路坡度不能太大,如京沪高铁最大坡度低于12‰,困难处最大坡度也不能高于20‰,所以中国的高铁线路多采用无砟轨道以及无缝钢轨。当然高铁线路还要严格控制沉降,这也是中国高铁建设热衷采用桥梁的原因之一。普通的填方路基是由特定 的填料(粘土、碎石土等)填筑而成的,这些填料填筑时是较为松散的,需要依靠机具压实到一定程度。但是由于填料本身的固有性质,即便是机具压实后,填土也会继续发生一定程度的固结沉降。而桥梁则不是,桥梁是建立在桩基之上的。根据地质情况不同,桩基的深度也不一样,一般要打到岩石层,有些深度达六七十米深。所以建立在桥梁之上的线路产生的沉降就很小。

立一枚硬币在中国高铁上8分钟而不倒,原因就在这里。

❿ 为什么在中国高铁上立一个硬币不会倒

因为我国高铁技术比较先进。就连轨道焊接都有很高的标准,列车本身的技术就更先进了,所以中国高铁运行很稳定。

虽然中国的高铁起步比一些发达国家晚,以前,所有的高铁都是德国标准或日本标准,但现在中国自主研发的动车组列车采用了大量的技术标准,如中国国家标准、中国铁路总公司企业标准等。特别是目前的“复兴”列车,占动车组254个重要标准的84%,这是真实的。中国制造“子弹头列车。

在建筑施工过程中,由于建筑的综合性和专业的复杂性,往往存在大量的碰撞问题造成的资源浪费,这通常是不容易解决的,但BIM技术的优势却大大地显露出来。在项目施工前完成信息模型的碰撞检测,可以及时预防施工过程中的各种碰撞问题,大大降低项目施工的风险和浪费。为避免经济损失,工程建设效益显著提高。同时,将二维码与信息模型相结合,实现了材料的可追溯性和构件安装位置信息的清晰性,提高了通信效率,更好地保证了工程质量和控制了工程造价。

赞 (6)
打赏 微信扫一扫 微信扫一扫